Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299795

RESUMO

This work presents a multi-parameter optical fiber monitoring solution applied to an underground power distribution network. The monitoring system demonstrated herein uses Fiber Bragg Grating (FBG) sensors to measure multiple parameters, such as the distributed temperature of the power cable, external temperature and current of the transformers, liquid level, and intrusion in the underground manholes. To monitor partial discharges of cable connections, we used sensors that detect radio frequency signals. The system was characterized in the laboratory and tested in underground distribution networks. We present here the technical details of the laboratory characterization, system installation, and the results of 6 months of network monitoring. The data obtained for temperature sensors in the field tests show a thermal behavior depending on the day/night cycle and the season. The temperature levels measured on the conductors indicated that in high-temperature periods, the maximum current specified for the conductor must be reduced, according to the applied Brazilian standards. The other sensors detected other important events in the distribution network. All the sensors demonstrated their functionality and robustness in the distribution network, and the monitored data will allow the electric power system to have a safe operation, with optimized capacity and operating within tolerated electrical and thermal limits.


Assuntos
Líquidos Corporais , Humanos , Brasil , Fontes de Energia Elétrica , Eletricidade , Febre
2.
Sensors (Basel) ; 21(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34640850

RESUMO

We detail a study of the techniques and sealing materials for optical fiber sensors used in dynamic environments with high pressure (>300 bar) and high temperature (>300 °C). The sealing techniques and materials are the key for the robustness of sensors in harsh dynamic environments, such as large combustion engines. The sealing materials and techniques studied in this work are high-temperature epoxies, metallic polymer, metallic solders, glass solder, cement, brazing and electroless nickel plating. Because obtaining high temperature simultaneously with high pressure is very difficult in the same chamber in the laboratory, we developed a new and simple method to test sealed fibers in these conditions in the laboratory. In addition, some sensors using the materials tested in the laboratory were also field tested in real thermoelectric combustion engines. The study also discusses the methods of fabrication and the cost-benefit ratio of each method.

3.
Sensors (Basel) ; 21(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34282789

RESUMO

Sensors based on polarization are suitable for application in power grids due to their excellent characteristics, such as high electrical insulation, non-magnetic saturation, oil-free, no risk of explosive failures, and high bandwidth. Utility companies are incorporating new technologies that are driving the evolution of electrical systems. Thus, it is interesting to evaluate the possibility of using polarization sensors in a network configuration. In this work, we present an experimental study of a current and voltage polarization sensor network applied to a medium voltage distribution grid. The current sensor is based on the Faraday effect, and the voltage sensor uses the Pockels effect. Both sensors use a 90° polarization degree between the two output ports to compensate for the various impairments on the measurements by applying the difference-over-sum. The network uses a DWDM topology centered at the 1550 nm range, and both current and voltage sensors in this work used this spectral band. We evaluated the sensor node in terms of accuracy according to IEC standard 61869-10 and IEC standard 61869-11. Considering that an important application of this sensor network is in the aerial cable of medium voltage networks, sensor node accuracy was also estimated in the presence of cable vibration. The calculated power budget of the proposed network indicates that reaching ten nodes of current and voltage sensors in a 10 km optical link is possible, which is enough for a medium urban voltage distribution network.

4.
Sensors (Basel) ; 21(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466683

RESUMO

In this work, we present the design, laboratory tests, and the field trial results of a power-over-fiber (PoF) low power instrument transformer (LPIT) for voltage and current measurements in the medium voltage distribution networks. The new proposed design of this power-over-fiber LPIT aims to overcome the drawbacks presented by the previous technologies, such as the continuous operation (measuring and data transmission) for a wide current range conducted in the medium voltage transmission lines, damage due to lightning strikes, accuracy dependency on vibration, position and temperatures. The LPIT attends the accuracy criteria of IEC 61869-10 and IEC 61869-11 in terms of current and voltage accuracy and it attends the practical criteria adopted by Utilities companies including voltage measurements without removing the coating of the covered conductors. The PoF based LPIT was developed to be applied at 11.9 kV, 13.8 kV, and 23.0 kV phase-to-phase nominal voltages, and in two current ranges 1.25-30 A and 37.5-900 A. The digital data transmission of current, voltage, and temperature from the sensing unit to the processing unit uses a special synchronism technique and it is performed by two 62.5 µm multimode fibers in 850 nm. The optical powering in 976 nm is also performed by one 62.5 µm multimode fiber from the processing unit to the sensor unit. We presented all details of the sensor design and its laboratory characterization in terms of accuracy and temperature correction. We also presented the results of field tests of the sensor made in two different conditions: in a standard distribution network and an experimental hybrid fiber/power distribution network. We believe that these studies aim to incorporate optical fiber and devices, digital technologies, communications systems in electrical systems driving their evolution.

5.
Sensors (Basel) ; 20(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076267

RESUMO

We demonstrated in this work a filterless, multi-point and temperature-independent FBG (fiber Bragg grating) dynamical demodulator using pulse-width-modulation (PWM). In this approach, the FBG interrogation system is composed of a tunable laser and a demodulator that is designed to detect the wavelength shift of the FBG sensor without any optical filter making it very suitable to be used in harsh environments. In this work, we applied the proposed method that uses the PWM technique for FBG sensors placed in high pressure and high-temperature environments. The proposed method was characterized in the laboratory using an FBG sensor modulated in a frequency of 6 Hz, with a 1 kHz sweeping frequency in the wavelength range from 1527 to 1534 nm. Also, the method was evaluated in a field test in an engine of a thermoelectric power plant.

6.
Sensors (Basel) ; 19(22)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717410

RESUMO

Power transformer is the most important and expensive equipment used in the electric power industry. Fiber Bragg grating (FBG) sensors has stood out as a flexible and particularly suitable tool for power transformer monitoring being a passive and dielectric sensor element. In this work we evaluated the performance of FBG pressure sensors developed to monitor the static and dynamic pressure in high voltage winding transformers during events such as short-circuit and inrush current. Two types of sensors packaging materials were evaluated in laboratory: polyether ether ketone (PEEK) and transformerboard (TB). The sensors have been tested for high intensity and short duration impacts similar to those occurring in short circuits. In addition, we evaluated the time response of sensors using an interrogation system with a 5 kHz sweep in order to analyze the short circuit response time properly. The results pointed that FBG pressure sensors using PEEK and TB are suitable for transformer winding monitoring. The static sensitivity obtained to PEEK based sensors was 0.911 pm/N, in the range of 800 N to 1500 N. This sensitivity is 4.47 higher than TB based sensors sensitivity. Dynamical tests performance showed an excellent repeatability for both sensors, in agreement with static observation.

7.
Opt Express ; 23(10): 12582-94, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-26074513

RESUMO

A method for PMD distributed localization and estimation based on polarization optical time domain reflectometer technique, pOTDR and pulse width sweep is used on-field for the first time. The method consists in launching light pulses with variable widths in an optical fiber under test and then analyzes the Rayleigh backscattered signal spatial power distribution after passing through a polarizer. Both localization and PMD magnitude are function of OTDR pulse width and can be obtained from the ripple analysis, enabling the characterization of the fiber links.

8.
Opt Express ; 21(7): 8190-204, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23571909

RESUMO

In this paper, we propose an in-service method to simultaneously monitor both nominal and effective values of differential group delay (DGD) in wavelength-division multiplexing (WDM) optical communication systems, in a per channel basis. The method is based on coherent heterodyne detection of the optical signal. We have demonstrated that the technique is capable to recover nominal DGD values from 0 ps to 90 ps while, at same time, to provide the effective DGD parameter, related to the impairment of optical channels. The relationship between the Q factor and effective DGD was also demonstrated, both numerically and experimentally, for distinct nominal values of DGD inserted on the system, by varying the state of polarization (SOP) of the optical signal at the input of the DGD element.


Assuntos
Dispositivos Ópticos , Processamento de Sinais Assistido por Computador/instrumentação , Telecomunicações/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
9.
Appl Opt ; 51(17): 3957-65, 2012 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-22695676

RESUMO

We present a simultaneous optical signal-to-noise ratio (OSNR) and differential group delay (DGD) monitoring method based on degree of polarization (DOP) measurements in optical communications systems. For the first time in the literature (to our best knowledge), the proposed scheme is demonstrated to be able to independently and simultaneously extract OSNR and DGD values from the DOP measurements. This is possible because the OSNR is related to maximum DOP, while DGD is related to the ratio between the maximum and minimum values of DOP. We experimentally measured OSNR and DGD in the ranges from 10 to 30 dB and 0 to 90 ps for a 10 Gb/s non-return-to-zero signal. A theoretical analysis of DOP accuracy needed to measure low values of DGD and high OSNRs is carried out, showing that current polarimeter technology is capable of yielding an OSNR measurement within 1 dB accuracy, for OSNR values up to 34 dB, while DGD error is limited to 1.5% for DGD values above 10 ps. For the first time to our knowledge, the technique was demonstrated to accurately measure first-order polarization mode dispersion (PMD) in the presence of a high value of second-order PMD (as high as 2071 ps(2)).

10.
Appl Opt ; 47(33): 6207-11, 2008 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19023384

RESUMO

We report on a feedback optical power control technique applied to fiber powering active sensors. The active sensor consists of one laser: a 1310 nm Fabry-Perot laser or a 1550 nm distributed feedback laser. In order to power up these elements, a remote high-power laser operating at 1480 nm was used. Light conversion to electricity was achieved using indium phosphide photovoltaic cell proper to operate from 1000 to 1600 nm. Results show that the proposed control system provided sensor optical power with variation less than 0.2 dB when the temperature changed from 23 to 100 degrees C or for fiber link attenuation variation from 0 to 10 dB.

11.
Opt Lett ; 29(17): 1983-5, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15455754

RESUMO

The distributed gain of single- and dual-wavelength-pumped thulium-doped fiber amplifiers is modeled. The excellent agreement between the model and coherent optical frequency domain reflectometry measurements enables us to estimate intrinsic loss, branching ratios of fluorescence originating from the 3H4 level, and cross sections of upconversion pumping at 1050 and 1410 nm for the Tm3+ ions in the fiber. With the branching ratios obtained it is possible to describe induced signal absorption when pumping at 800 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...